Aplicaciones de Nanocompuestos en Arquitectura y Construcción.

Autores/as

  • Silverio Hernández Moreno Universidad Autónoma del Estado de México
  • Sara Cristina Solache de la Torre Universidad Autónoma del Estado de México

Palabras clave:

Nanocompuestos, Nanodiseño, Nanotecnología

Resumen

Artículo de revisión que tiene como objetivo presentar un panorama del uso de nanocompuestos dentro de la arquitectura y construcción con base en revisión de literatura científica y desde el punto de vista del arquitecto. Las aplicaciones se clasifican de acuerdo al uso del nanomaterial para mejorar sus propiedades y funcionamiento en un número determinado de categorías de materiales de construcción, tales como: mejoramiento de resistencias mecánicas del concreto de base de cemento Portland; mejoramiento de las resistencias a la corrosión y deterioro del acero de refuerzo; repelencia al polvo, humedad, grasa y bacterias; aislamiento térmico y protección de rayos UV; en células y paneles fotovoltaicos de nueva generación; impermeabilizantes y selladores de alta calidad; en partes y componentes electrónicos de telecomunicaciones y de iluminación; en equipos de purificación, tratamiento y filtros de agua. Se concluye que el mejoramiento de cada uno de los materiales a través de nanocompuestos dependerá de cada situación respecto a: su diseño, su dosificación, su caracterización y evaluación del material respecto al componente constructivo del cual forme parte, del clima y de las condiciones de degradación, del uso y mantenimiento así como de la calidad de mano de obra en la construcción o instalación de los componentes y de los materiales.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Silverio Hernández Moreno, Universidad Autónoma del Estado de México

Profesor investigador en la Facultad de Arquitectura y Diseño, Universidad Autónoma del Estado de México, Cerro de Coatepec s/n, Ciudad Universitaria, Toluca, Estado de México, C. P. 50110, nacionalidad mexicana,; 01 722 2140414; extensión 214.

Sara Cristina Solache de la Torre, Universidad Autónoma del Estado de México

Alumna del Programa de Maestría en Diseño con énfasis en arquitectura (en el PNPC CONACYT), Facultad de Arquitectura y Diseño, Universidad Autónoma del Estado de México, Cerro de Coatepec s/n, Ciudad Universitaria, Toluca, Estado de México, C. P. 50110, nacionalidad mexicana,

Citas

Anjum Muzammil, Miandad R., Waqas

Muhammad, Gehany F., Barakat M.A. (2016).

Remediation of wastewater using various

nanomaterials, Arabian Journal of Chemistry,

Article in Press.

http://dx.doi.org/10.1016/j.arabjc.2016.10.004.

Bamoharram Fatemeh FHeravi., Majid M.,

Saneinezhad Sara, Ayati Ali (2013). Synthesis of

a nano organo-silicon compound for building

materials waterproofing, using heteropolyacids as

a green and eco-friendly catalyst, Progress in

Organic Coatings, 76 (2-3), pp. 384–387.

http://dx.doi.org/10.1016/j.porgcoat.2012.10.005.

Barkhudarov Philip M., Shah Pratik B.,

Watkins Erik B., Doshi Dhaval A., Brinker C.

Jeffrey and Majewski Jaroslaw. (2008). Corrosion

inhibition using superhydrophobic films,

Corrosion Science, 50 (3), pp. 897–902.

Bellanger Hervé, Darmanin Thierry, Taffin de

Givenchy Elisabeth and Guittard Frédéric. (2014).

Chemical and Physical Pathways for the

Preparation of Superoleophobic Surfaces and

Related Wetting Theories, Chem. Rev., 114 (5), pp

–2716.

Bharat Bhushan and Yong Chae Jung. (2011).

Natural and biomimetic artificial surfaces for

superhydrophobicity, self-cleaning, low adhesion,

and drag reduction, Progress in Materials Science,

(1), pp. 1-108.

Bjornstrom J, Martinelli A, Matic A, Borjesson

L, Panas I. (2004). Accelerating effects of

colloidal nano-silica for beneficial calcium–

silicate–hydrate formation in cement. Chem Phys

Lett; 392 (1–3): pp. 242–8.

Cabala Guillermo van Erven, Acchar Wilson

(2015). Silver Nanoparticle Surface

Functionalized Alumina Filters for Disinfection of

Potable Water, Materials Today: Proceedings, 2

(1), pp. 321-330.

doi:10.1016/j.matpr.2015.04.057.

Chiang Chien-Jung, Bull Steve, Winscom

Chris, Monkman Andy (2010). A nanoindentation

study of the reduced elastic modulus of

Alq3 and NPB thin-film used in OLED devices,

Organic Electronics, 11 (3), pp. 450–455.

http://dx.doi.org/10.1016/j.orgel.2009.11.026.

Darmanin Thierry and Guittard Frédéric.

(2015). Superhydrophobic and superoleophobic

properties in nature, Materials Today, 18 (5), pp.

-285.

Dayneko Sergey, Lypenko Dmitriy, Linkov

Pavel, Sannikova Nataliya, Samokhvalov Pavel,

Nikitenko Vladimir, Chistyakov Alexander

(2016). Application of CdSe/ZnS/CdS/ZnS Core–

multishell Quantum Dots to Modern OLED

Technology, Materials Today: Proceedings, 3 (2),

pp. 211-215. doi:10.1016/j.matpr.2016.01.059.

Eden Energy® (2014). Carbon NanotubeEnriched

Concrete -Project Review, Australian

Securities Exchange Announcement; “Report:

ACN 109 200 900”, 12 August 2014. Eden

Energy®, Australia.

EPA (2014). Technical Fact sheet –

Nanomaterials, U.S. Environmental Protection

Agency, USA.

Fahlman BD. (2011). What is Materials

Chemistry? New York: Springer. DOI:

1007/978‐94‐007‐0693‐4

Gornicka B., Mazur M., Sieradzka K., Prociow

E. and Lapinski M. (2010). Antistatic Properties of

Nanofilled Coatings, Acta Physica Polonica A,

(5), pp. 869-872.

Hammer, P., F. C. dos Santos, B. M. Cerrutti,

S. H. Pulcinelli and C. V. Santilli (2012).

“Corrosion Resistant Coatings Based on OrganicInorganic

Hybrids Reinforced by Carbon

Nanotubes”, in: Recent Researches in Corrosion

Evaluation and Protection, Reza Shoja Razavi

(Ed.), ISBN: 978-953-307-920-2.

Jeong, C. (2013). “Nano-Engineering of

superhydrophobic aluminum surfaces for anticorrosion”,

PhD Thesis, Stevens Institute of

Technology.

Kapridaki Chrysi Maravelaki-Kalaitzaki,

Pagona (2013). TiO2–SiO2–PDMS nanocomposite

hydrophobic coating with self-cleaning

properties for marble protection, Progress in

Organic Coatings, 76 (2-3), pp. 76 (2-3).

http://dx.doi.org/10.1016/j.porgcoat.2012.10.006.

Kharissova Oxana V., Torres Martínez Leticia

M. and Kharisov Boris I. (2016). “Recent Trends

of Reinforcement of Cement with Carbon

Nanotubes and Fibers”, in Silva Adrian M.T. and

Carabineiro Sonia A.C. (editors), Advances in

Carbon Nanostructures, editorial ExLi4EvA.

Kim Hyeong-Ki. (2015). Chloride penetration

monitoring in reinforced concrete structure using

carbon nanotube/cement composite, Construction

and Building Materials, 96 (2015), pp. 29-36.

Krishnamurthy, A., Gadhamshetty, V.,

Mukherjee, R., Chen, Z., Ren, W., Cheng, HM,

and N. Koratkar (2013). Passivation of microbial corrosion using a graphene coating, Carbon, 56

(2013), pp. 45-59.

Kuang Daibin, Brillet Jérémie, Chen Peter,

Takata Masakazu, Uchida Satoshi, Miura

Hidetoshi, Sumioka KohichiZakeeruddin, Shaik.

M., Grätzel Michael (2008). Application of Highly

Ordered TiO2 Nanotube Arrays in Flexible DyeSensitized

Solar Cells, ACS Nano, 2 (6), pp. 1113-

DOI: 10.1021/nn800174y.

Kumar Narendra and Kumbhat Sunita. (2016).

Essentials in nanoscience and nanotechnology,

John Wiley & Sons, Hoboken, New Jersey, EUA.

Lamaka, S.V., Zheludkevich, M.L., Yasakau,

K.A., Serra, R., Poznyak, S.K., and M.G.S.

Ferreira (2007). Nanoporous titania interlayer as

reservoir of corrosion inhibitors for coatings with

self-healing ability, Prog. Org. Coat., 58 (2007),

pp. 127–135.

Larramendy Marcelo L. and Soloneski Sonia.

(2016). Green Nanotechnology Overview and

Further Prospects, Publishing Process Manager.

Li H, Xiao H-g, Yuan J, Ou J. (2004).

Microstructure of cement mortar with

nanoparticles. Compos B Eng, 35 (2): pp. 185–9.

Li H, Zhang M-h, Ou J-p. (2006). Abrasion

resistance of concrete containing nanoparticles for

pavement. Wear; 260 (11–12): pp. 1262–6.

Li Z, Wang H, He S, Lu Y, Wang M. (2006).

Investigations on the preparation and mechanical

properties of the nano-alumina reinforced cement

composite. Mater Lett; 60 (3): pp. 356–9.

Li, Y., Ji, S., Gao, Y., Luo, H., and Kanehira,

M. (2013). Core-shell VO2@TiO2nanorods that

combine thermochromic and photocatalytic

properties for application as energy-saving smart

coatings. Scientific Reports, 3 (2013), 1370-1382.

http://doi.org/10.1038/srep01370.

Ltifi Mounir, Guefrech Achraf, Mounanga

Pierre, Khelidj Abdelhafid. (2011). Experimental

study of the effect of addition of nano-silica on the

behaviour of cement mortars, Procedia

Engineering 10 (2011), pp. 900–905.

Mohamed Anwar M. (2016). Influence of nano

materials on flexural behavior and compressive

strength of concrete, HBRC Journal, 12 (2016),

pp. 212-225.

Montemora, M. F., Pinto, R., and M.G. S.

Ferreira (2009). Chemical composition and

corrosion protection of silane films modified with

CeO2 nanoparticles, Electrochim Acta, 54 (2009),

pp. 51-79.

Morante Joan Ramón, Pérez-Rodríguez

Alejandro, Saucedo Edgardo, Escoubas Ludovic,

Le Rouzo Judikaël (2016). Special issue

“Nanotechnology for next generation high

efficiency photovoltaics: NEXTGEN NANOPV

Spring International School & Workshop”, Solar

Energy Materials and Solar Cells, 158 (2), pp.

–125.

http://dx.doi.org/10.1016/j.solmat.2016.06.035.

Nakajima Akira, Hashimoto Kazuhito,

Watanabe Toshiya. (2001). Recent Studies on

Super-Hydrophobic Films, Monatshefte für

Chemie, 132 (1), pp. 31-41.

Qing Y, Zenan Z, Li S, Rongshen C. (2008). A

comparative study on the pozzolanic activity

between nano-SiO2 and silica fume. J. Wuhan

Univ Technol – Materials Science; 21 (3): pp.153–

Saloma, Nasution Amrinsyah, Imran Iswandi,

Abdullah Mikrajuddin (2015). Improvement of

concrete durability by nanomaterials, Procedia

Engineering, 125 (2015) pp. 608 – 612.

Sanchez F, Zhang L, Ince C. (2009). Multiscale

performance and durability of carbon

nanofiber/cement composites. In: Bittnar Z, Bartos

PJM, Nemecek J, Smilauer V, Zeman J, editors.

Nanotechnology in construction: proceedings of

the NICOM3 (3rd International Symposium on

Nanotechnology in Construction). Prague, Czech

Republic; p. 345–50.

Sánchez Florence and Sobolev Konstantin.

(2010). Nanotechnology in concrete – A review,

Construction and Building Materials, 24 (2010),

pp. 2060–2071.

http://dx.doi.org/10.1016/j.conbuildmat.2010.03.

Shchukin, D. G., Zheludkevich, M., Yasakau,

K., Lamaka, S., Ferreira, M. G. S., and H.

Moehwald (2006). Layer-by-layer assembled

nano-containers for self-healing corrosion

protection, Advanced Materials, 18 (2006), pp. 16-

Shi, X., T. A., Nguyen, Suo, Z., Liu, Y., and R.

Avci (2009). Effect of nanoparticles on the

anticorrosion and mechanical properties of epoxy

coating, Surface & Coatings Technology, 204

(2009) pp. 237–245.

Šmilauer, V., Hlavácek, P., Padevet, P. (2012).

Micromechanical analysis of cement paste with

carbon nanotubes. Acta Polytechnica, 52 (6), pp.

–28.

Srivastava D, Wei C, Cho K (2003). Nanomechanics

of carbon nanotubes and composites.

Appl Mech Rev; 56 (2003): pp. 215–30.Wei-I Hung, Kung-Chin Chang, Ya-Han

Chang and Jui-Ming Yeh (2011). “Advanced

Anticorrosive Coatings Prepared from PolymerClay

Nanocomposite Materials”, in: Advances in

Nanocomposites - Synthesis, Characterization and

Industrial Applications, Boreddy Reddy (Ed.),

ISBN: 978-953-307-165-7, InTech.

Wierer Jr Jonathan J, Li Qiming, Koleske

Daniel D, Lee Stephen R, Wang George T (2012).

III-nitride core–shell nanowire arrayed solar cells,

Nanotechnology, 23 (19). DOI: 10.1088/0957-

/23/19/194007.

Yaghoubi Houman, Taghavinia Nima,

Keshavarz Alamdari Eskandar (2010). Selfcleaning

TiO2 coating on polycarbonate: Surface

treatment, photocatalytic and nano-mechanical

properties, Surface and Coatings Technology, 204

(9–10), pp. 1562–1568.

http://dx.doi.org/10.1016/j.surfcoat.2009.09.085.

Yanfeng Gao, Hongjie Luo, Zongtao Zhang,

Litao Kang, Zhang Chen, Jing Du, Minoru

Kanehira, Chuanxiang Cao. (2012). Nanoceramic

VO2 thermochromic smart glass: A review on

progress in solution processing, Nano Energy, 1,

(2), pp. 221-246; ISSN: 2211-2855,

http://dx.doi.org/10.1016/j.nanoen.2011.12.002.

Zaki Ahmad and B.J. Aleem (2009). ErosionCorrosion

Behavior of Plasma-Sprayed

Nanostructured Titanium Dioxide Coating in

Sodium Chloride-Polystyrene Slurry, Corrosion,

(9), pp. 611-623.

Zhu W, Bartos PJM, Porro A. (2004).

Application of nanotechnology in construction.

Summary of a state-of-the-art report. Mater Struct

(37), pp. 649–58.

Descargas

Publicado

2017-09-13

Cómo citar

Hernández Moreno, S., & Solache de la Torre, S. C. (2017). Aplicaciones de Nanocompuestos en Arquitectura y Construcción. CONTEXTO. Revista De La Facultad De Arquitectura De La Universidad Autónoma De Nuevo León, 11(14), 63–75. Recuperado a partir de https://contexto.uanl.mx/index.php/contexto/article/view/64